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Abstract-The evolution of the crack growth speed in a buckled one-dimensional delamination
model is studied and two approximate solutions are presented. In the quasi-dynamic analysis one
assumes that the time-dependent deflection of the delaminated layer may be approximated by the
static postbuckling solution for the current delamination length. In a refined analysis one introduces
an indeterminate amplitude function. The local growth condition at the crack tip is not enforced
but a global energy-balance condition is used. The crack growth speeds are found to be comparable
to the speeds of flexural waves. For slow and moderate rates of crack growth, the present results
are in close agreement with the finite-difference solutions of the dynamic problem.
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I. INTRODUCTION

Under a sufficiently large compression load, a composite laminate with an interior delami­
nation may be susceptible to the initiation of local buckling and to postbuckling delami­
nation growth. Some understanding of the effects of the various geometrical, material and
loading parameters, and of the ways in which they combine to produce qualitatively different
types of buckling, postbuckling and delamination growth behavior, has emerged recently as
a result of several analytical studies on the subject [for selected references see Storakers
(1989) and Yin (1989)]. These studies were based on static postbuckling solutions of one­
and two-dimensional delamination models, and assumed the Griffith criterion of a constant
specific fracture energy in the growth process. The nature of the buckling and postbuckling
behavior was shown to be crucially dependent on the relative slenderness of the delaminated
layer versus the base laminate (Yin and Fei, 1984, 1988; Simitses et al., 1985; Yin et al.,
1986). Significant mechanical interaction between the layer and the base laminate was noticed
in the postbuckling process, and such interaction affects the continued opening or possible
closing of the crack surfaces at the front of delamination. In the case of delaminated layers
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with unsymmetric layups, the buckling load and the postbuckling deformation may be
strongly affected by bending-stretching coupling (Yin, 1986, 1988).

Although these analytical studies took into account the important effects ofgeometrical
nonlinearity, they ignored the inertial effect, which may significantly affect the deflection
and the force and moment resultants, particular in the boundary region of the delaminated
layer. According to the postbuckling equilibrium solutions ofstrip and circular delamination
models, if the strain load in the base laminate is maintained constant after the initiation of
growth, then the energy-release rate at the crack front increases rapidly in an initial stage
of growth. But the energy-release rate in dynamic growth is always equal to the specific
fracture energy of the material, although the latter may depend on the mix of fracture
modes and on the speed of crack growth. These two different predictions of the energy­
release rate suggest that, at least within a small neighborhood of the moving crack boundary,
the deflection of the static solution may be significantly modified by the inertial effect.
Presumably, the dynamic deflection has a smaller curvature and therefore yields a smaller
bending moment at the boundary ofdelamination. This in turn constrains the energy release
rate to the level dictated by the crack growth criterion.

The free boundary problem associated with the dynamic growth of a buckled delami­
nation cannot be solved in closed form and is computationally laborious. Consequently, it
is desirable to obtain simple yet reasonably accurate estimates of the growth speed of a
one-dimensional delamination from the condition of global energy balance, by making
plausible assumptions concerning the approximate shape ofthe dynamic deflection. "Quasi­
dynamic analysis" based on a similar consideration has been applied previously to related
problems of crack growth in a double cantilevered beam specimen subjected to a constant
load or a constant end separation (Berry, 1960a, b). For the cleavage fracture of the same
specimen caused by the insertion of a moving wedge, Bilek and Burns (1974) obtained a
dynamic solution by using the similarity method. The solution yields a crack growth speed
close to the prediction of the quasi-dynamic analysis. This appears to provide some support
for the validity of the quasi-dynamic solution (Burns and Webb, 1970).

In the present paper, the global energy-balance condition is used to investigate the
evolution of the crack speed in uni-directional and bi-directional growth of a thin strip
(one-dimensional) delamination. We assume that an axial compressive strain is imposed in
the base laminate to cause buckling of the delaminated layer, and the load is increased
further to a level sufficient for the initiation of delamination growth. The imposed axial
strain is maintained constant in the subsequent growth process. Besides the quasi­
dynamic solution based on the equilibrium deflection function, we obtain an improved
approximate solution containing a time-dependent amplitude function which is to be deter­
mined by a weighted integral of the equation of motion.

The results of the analysis indicate that, after an initial period of accelerating growth,
the crack speed levels off in delamination models with a small specific fracture energy. In
models with a relatively large specific fracture energy, the growth eventually decelerates to
a state of arrest. Close agreement between the growth speeds of the two solutions is obtained
when the speeds are not significantly greater than the speed of the flexural waves having
a wavelength equal to the initial length of the delamination.

2. FORMULATION

We consider the simplest problem of delamination growth, namely, dynamic growth
of a thin, strip delamination in a thick homogeneous base plate. The delamination runs
across the entire width of the plate, so that the geometry of the problem is independent of
the z-coordinate (Fig. 1). The thickness of the delaminated layer is assumed to be negligibly
small compared to that of the base plate so that buckling of the delaminated layer and
growth of the delamination do not affect the state of membrane strain in the base plate.
Such a delamination is called a "thin-film" delamination. Let hand 2ao denote, respectively,
the thickness and the initial length of the delaminated layer. The layer buckles when the
compressive axial strain Eo in the base plate exceeds the bifurcation strain (nh/ao)2/12. Prior
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Fig. 1. One-dimensional delamination model.
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to the growth of the delamination, the postbuckling deformation of the layer is described
by

Wo(x) = 2hJ(ao/xh) 280 -1/12[I-cos (xx/ao)], (0 < x < 2ao). (1)

The static strain energy release rate G at the front of the delamination may be determined
by evaluating the J-integral around a path enclosing the crack tip (Yin and Wang, 1984).
This yields

(2)

Delamination growth starts when 80 is sufficiently large so that G attains the fracture
toughness G~. If the axial strain is maintained constant after the initiation of growth,
the deflection function w(x, t) in the subsequent growth process is governed by the equations

DW,xxxx+P(t)w,xx+phw,1I =0, (0 < x < 2a(t»,

W(x, t) =0, (x < 0 or x > 2a(t»,

(3)

(4)

where D =Eh 3/[12(I-v 2
)] is the bending rigidity, E and v are the elastic moduli of the

material, and ph is the mass per unit length of the delaminated layer, In eqn (3), the
subscripts following a commit indicate partial differentiation. We here assume that the
delamination grows at the right-hand end, x = 2a(t), but not at the left-hand end (the case
of bi-directional growth will be considered later). It is anticipated that the speed of crack
growth is comparable to the speed of flexural waves whose wavelengths are of the order of
the initial length of the delamination. For thin delaminations these speed are considerably
smaller than the longitudinal wave speed. Hence the axial compressive load P does not
depend appreciably on x.

The deflection function w(x, t) must satisfy the following boundary conditions:

W = w,x = 0 at x = 0 and x = 2a(t),

and the initial conditions

W(x,O) = wo(x), W,t(x,O) = 0,

(5)

(6)

where wo(x) is as defined by eqn (1). Furthermore, a boundary condition for the axial
displacement requires that

(7)

Finally, one has the delamination growth condition at the crack tip:
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2 ,2 121) 2 2 _ *
ph(w.J + D(l\. .xx) + (Eh)dEt: o- (I - V )P(t)/h] - 2G at x = 2a(t). (8)

The preceding governing differential equation and growth condition may be derived from
Hamilton's principle, as was done by Bilek and Burns (1974) for dynamic fracture of double
cantilevered beams and by Bottega and Maewal (1983) for the growth of mid-plane circular
delaminations under axisymmetric transient loads. It should be mentioned that the first
term on the left-hand side of eqn (8) always vanishes and therefore may be ignored. To
prove this assertion, we form the material time derivative ofeqn (4) in the region x> 2a(t)
and take the limit x -> 2a(t) from the right. We then obtain

a(t)n'" +11', = 0 at x = 2a(t).

This yields w,l(2a(t), t) = 0 since w.x vanishes at the moving crack tip.
By substituting pet) of eqn (7) into eqns (3) and (8), one obtains a nonlinear integro­

differential equation and a moving boundary condition for the deflection w(x, t). Here the
unknown function a(t) appears not only in the boundary condition but also in the governing
equation of motion. This feature and the nonlinearity of the equation distinguish the present
problem from the usual free boundary problems, including the various dynamic fracture
problems related to the cleavage of double cantilevered beam specimens (Berry, 1960a, b ;
Burns and Webb, 1970; Bilek and Burns, 1974) and the tearing and lifting of adhesive
layers and beams from a substrate (Burridge and Keller, 1978; Hellan, 1978). Special
analytical techniques such as the similarity method may not be applicable to the present
problem, in spite of their success in other cases.

The specific fracture energy G* of eqn (8) stands for a critical level of the crack driving
force, or the energy supply rate, required for sustaining crack growth. Although G* is
generally a function of the crack growth speed and the temperature, a constant value of G*
is usually assumed in the various analytical studies of dynamic fracture and this assumption
will be adopted in the present analysis. However, this constant value of G* for sustaining
the growth need not be equal to the corresponding value G~ for the initiation of growth.
The latter is given by the right-hand side of eqn (2), if 80 is taken to be the axial compressive
strain at the initiation of growth. If we define the dimensionless constants y* and IX by the
expreSSiOns

Then, by setting G = G~ in eqn (2), we obtain

i'* = (1X-I)(o:+3)/12.

(9a, b)

(l0)

Either one of the two constants (X and y* may be used to characterize the static specific
fracture energy Gt, and to determine the critical axial strain 80 at the initiation of delami­
nation growth. These constants, however, depend not only on the material but also on the
initial geometry of the delaminated layer through the factor ari/h 5 in eqn (9a).

3. QUASI-DYNAMIC SOLUTION

By assuming that the static beam solutions represent the deflection at the successive
instants of crack growth, the quasi-dynamic analysis allows the speed of crack growth to
be obtained directly from a global energy-balance law, without recourse to the equation of
motion or to the local growth condition at the crack tip. For a buckled, thin strip delami­
nation, the deflection function of the quasi-dynamic solution is obtained by substituting
aCt) for ao in eqn (I). This yields
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(11)

The problem reduces to the determination of the function a(t) or its derivative. Substituting
eqn (11) into eqn (7), one obtains

P(t) == D[nla(tW.

At the initiation of delamination growth, one has

w(x,O) == wo(x) = h[(a-I)/3] 1/2[1-cos (nxlao)],

(12)

(13)

(14)

where eqn (9b) has been used. The membrane and bending energies of the delaminated
layer in this state are given respectively by

and

i2ao 2Ehaoe~ 1( 1)
(DI2) (w,x.Y dx == I 2 - 1- - .

o -v a IX

The same layer in its unbuckled reference state has the strain energy Ehao(eo)2/(I-v2).
Hence in the static buckling process the layer releases an amount of strain energy

Ehaoe~ ( 1)2-AUo=-- 1-- .
l-v2 a:

(15)

We define the normalized half-length of the delamination at time t by the expression

Then

e(t) = a(t)lao.

(
Ote2 1)1/2( nx)

w(x, t) = h -3- I-cos aoe '

(16)

(17)

(18)

Steps similar to those leading to eqn (15) yield the release of strain energy in the buckling
of the layer of length 2a(l) :

(19)

Comparing eqns (15) and (19), one finds that the release of the strain energy in the course
of the quasi-dynamic growth from the initial length 2ao to the final length 2aoe(t) is

Eha e
2

[ ( I )2 ]AUo AU= 1_:20 e 1- ae2 _(l_l/a)2 . (20)
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The global energy-balance condition postulates that this released strain energy equals the
sum of the final kinetic energy and the fracture energy consumed in the growth process.
The fracture energy is given by

2(e-l)aoG* = (G*jG~)2ao(e-I)G~

G* Ehf.~ao
= G* -1-2 (l-1jlX)(1 +3jlX)(e -1).

o -v

The kinetic energy at the final state is

12U(I)

T = (phj2) Jo (w,Y dx,

where

(21)

It follows that

where

1t ( Eh
2 )1/2

Co = 2ao 12(I-v2)p

(22)

(23)

is the speed of flexural waves in the delaminated layer with a wave length 2ao (i.e. with a
wave form identical to the initial buckled shape of the layer).

By equating eqn (20) to the sum of eqns (21) and (22), we obtain the delamination
growth speed according to the quasi-dynamic analysis:

The acceleration of the delamination front is given by

At the initial state, one has
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Fig. 2. Uni-directional growth speed-quasidynamic solution.

a = e(1tCo)2) (l-G*IG~)(l-l/a)(1 +3Ia)

ao a:l +1+1(4n2/3-l/2)(1 l/a)

Hence the initial acceleration is positive if the dynamic specific fracture energy G* is smaller
than the static value G~. The initial acceleration vanishes if G* = G~. For the latter case,
the change of the normalized growth speed 2a(nco) with the increase of the normaliz.ed
delamination length ~ is shown in Fig. 2 for several values of the material parameter a.
Smaller values ofa correspond to faster growth behavior and, as a -+ 1, the curves approach
a limiting asymptote which is shown by the dashed curve in the figure. According to eqns
(9a) and (10), a must be greater than unity and, for a specified delamination thickness h
and initial length ao, larger values of a correspond to larger fracture toughness G~. For
G* = G~, the right-hand side of eqn (24) is positive for arbitrarily small ~ only if a < 3. If
a is within the range 1.5 < a < 3, then the crack speed decreases to zero when the normalized
length eincreases to the value 1/[{2(a-l)} 1/2_1]. On the other hand, if 1 < a < 1.5, then
the delamination growth continues indefinitely with the normalized crack growth speed
approaching a terminal value

. (Ii) (3/(2a)-1 )1/2hm ~ =2
~->oo nco 5.5 +4n213 (25)

It is interesting to observe that, although the driving force of the cleavage fracture of
a double cantilevered beam specimen is quite different from that of the delamination
buckling, qualitatively similar relations between the growth speed and the crack length are
obtained in the two cases [compare figure 7 of Berry (l960b) and Fig. 2 of the present
paper].

4. REFINED SOLUTION

A natural improvement over the quasi-dynamic analysis may be based on the assump­
tion that the deflection function has the shape of the postbuckling equilibrium solution at
each instant but differs from the latter by a factor depending on time or, equivalently, on
the current length of the delamination. The amplitude function introduced by this assump-
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tion, and the time-dependence of the delamination length, will be solved from the global
energy-balance condition and a weighted integral of the equation of motion.

Henceforth eqn (17) will be replaced by

w(x, t) ( nx)- = AmI - cos ----,:: ,
h aos

(26)

where A(~) is a dimensionless unknown factor. Substitution into eqn (7) yields the axial
force

The time-derivatives of the deflection are given by

.( ( nx) nxA nx)w,r/h = ~ A' l-cos- - ---e- sin - ,
a as a

..( ( nx) nxA nx)w tt/h = ~ A' l-cos·- ---. sin-
. a a~ a

'2( ( nx) (nx)2 nx (A' A)nx. nx)+~ A" I-cos +-- Acos -2 --- ~-sm---,
a a~ a ~ ~2 a a

(27)

(28a)

(28b)

where the primes indicate differentiation with respect to ~. Multiplying eqn (3) by the right­
hand side of eqn (26) and integrating the result over the length of the delamination, one
obtains, with the use of eqns (26)-(28), (9), (10) and (23) :

(
3AA' 3A2) (3 )
-2~+ 4~ (V 2)'+ 3AA"+~AA'-(4n2/3-1/2)(A/~)2V 2

(

0( 2 1) 2= e - (1 +3A ) ~4 A ,

where

(29)

(30)

Equation (29) must be supplemented by the energy-balance condition. We first consider
a delaminated layer of length 2ao~ and calculate the reduction of its membrane strain
energy as it deforms from a purely membrane state to the final buckled state under the fixed
axial strain eo. The result is

For a delaminated layer of fixed length 2ao under the same axial strain, the reduction of
the membrane strain energy in the buckling process may be obtained by setting ~ = 1 in
the last equation. Hence as the delamination length increases from 2ao to 2ao~, the release
of the membrane energy is
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In the growth process, the increment of the bending and kinetic energies are, respectively,

and

The fracture energy consumed in the growth process is

The energy-balance condition

yields the equation

(31)

Equations (29) and (31) form a coupled system of nonlinear differential equations for
the dimensionless amplitude A(~) and the normalized crack speed V(~). They must be
supplemented by three initial conditions, two of which are evident:

A(l) = [(a-l)/3p/2, V(l) = o. (32a, b)

A third condition may be obtained by requiring that eqns (29) and (31) deliver the same
initial value for (V 2

)". Differentiating the first equation once and the second equation twice
with respect to ~, and setting ~ = 1, one obtains

Oj3/(a-l)A'+ n(V2)" = -2j(a- 1)/3A' +2a/3

and

(3(A')2+j3(a-l)A' + (4;2 _Da; I)<V2)"

= -4(a- 1)(A')2 +8aj(a-l)/3A' -1(a-l)(a+3/2).

These relations yield identical values of (V 2
)" if
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3)(X- A'
2

(X-- 1(/ 3 2(4][2 1)\)-- (X+ + -- - --- a
3, 2 3 3 2

O. (33)

The positive root of this quadratic equation gives the initial value A'(I).
To facilitate numerical integration, the system of equations (29) and (31) and the

associated initial conditions (32) and (33) will be transformed into an equivalent initial­
value problem involving two first-order equations. We let

Y(~) = ~[A(~W, W(O Y'(~),

Q(O = [W(OV«()f,

f(~,Y)=~((X- 1 -~;)+«(X+I)G-~(~+D).

Then eqns (31) and (29) become, respectively

Equations (34b) and (36) now yield

(34a, b)

(34c)

(34d)

(35)

(36)

I (1 +3Y I~)J), (37a)

(37b)

In this new system of equations, Y = ~A 2 replaces ~ as the independent variable. The
associated initial conditions are

Q=O and ~=l at Y=(a-l)/3. (38)

In order to start the numerical integration procedure for (37) and (38), one must know the
initial value of de/d Y (since the right-hand side of eqn (37b) is indeterminate at the initial
point). This is given by

1 I

Y'(l) = 2J{~·= IY/3A'(l) +«(X-I)/3'

where A'(l) is determined by eqn (33).
For various values of (x, eqns (37) and (38) are integrated numerically by using the

fourth-order Runge-Kutta formula. The solutions Q(Y) and ~(Y) determine the normalized
growth speed V according to eqn (34c), i.e.

V
"(fee, Y)Q/Y - HQIY)2_)1/2
(----------- ---- --.

4n 2 /3-5/4 .
(39)
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Fig. 3. Uni-directional growth speed-refined solution.

The results are shown in Fig. 3. Comparison of Figs 2 and 3 shows excellent agreement
between the quasi-dynamic solution and the improved solution for O! > 1.5, Le. if the specific
fracture energy is large enough for the delamination growth to be eventually arrested. The
discrepancies between the growth speeds of the two models become significant as O! decreases,
and the wave speed of the improved solution may fluctuate over time when O! is close to
unity. Further comparison between the two solutions is shown in Fig. 4, where the ratio of
their deflection amplitudes, {3/(0!-1)} 1/2A(e), is plotted against the delamination length.
The ratio is uniformly close to unity for O! > 1.5. When O! is close to unity, the deflection
amplitude of the improved solution may be significantly smaller than the amplitude of the
quasi-dynamic solution in an initial stage of delamination growth.

5. BI-DIRECTIONAL GROWTH

If the delamination grows with the same speed at both ends, then the mid-point of the
delamination remains fixed and it is convenient to define the point as the origin of the x-

1.5 r--""---'---'---"--"---""--""""--'---"---,

S
1.9 '":::-

r:{I.1-..I
IlJ'

~
~

..." Y,....,.
9.5 -< v --1.04

~. 1.02

IlCtl/llo
9.9 '---"'-----'----'---'---'----'-_--l._---''---_''----J

2 3 4 5 6 7 8 9 19

Fig. 4. Amplitude ratio of the refined vs the quasidynamic solution-uni-directional growth.
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coordinate. For this case, the quasi-dynamic analysis and the improved analysis proceed in
ways similar to the case of uni-directional growth. The only change in the result is that the
constant 4n 2/3 in eqns (22), (24), (25), (29), (31), (33), (35), (37b) and (39) is replaced by
n 2/3. The normalized delamination growth speeds calculated from the two solutions are
shown in Figs 5 and 6. It should be mentioned that, whereas in uni-directional growth only
one crack tip moves with the speed 2a(t), in bi-directional growth both crack tips move
with the speed a(t). The figures indicate that, compared to uni-directional delamination
growth, bi-directional growth shows a smaller speed of crack-tip movement but a greater
rate of increase of the delamination length. The amplitude ratio of the refined solution
versus the quasi-dynamic solution is shown in Fig. 7 for the case of bi-directional growth.

6. CONCLUDING REMARKS

The preceding results show that, if the strain load in the base laminate, Co, is maintained
constant after the initiation of delamination growth, then the nature of dynamic growth

d.., 1.0~ _----------------
~---

0
u:::

0.5
~
,"

2 3 4 5 6 7 B 9 10

2.

0
u

:::-
~

1 • ...

Fig. 5. Bi-directional growth speed-quasidynamic solution.

l

2 3 4 5 6 7 8 9 10

Fig. 6. Bi-directional growth speed-refined solution.
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Fig. 7. Amplitude ratio of the refined vs the quasidynamic solution-bi-directional growth.

depends on the nondimensionalized parameter 1'* or IX [see eqns (9) and (10)]. 1'* and IX are
not purely material parameters because they depend on the initial geometry of the delami­
nated layer through the factor arih 5 in eqn (9a). For a relatively large IX (i.e. 1.5 < IX < 3),
delamination growth at first accelerates and subsequently decelerates to a state of arrest.
The maximum growth speed was found to be smaller than the flexural wave speed Co (the
speed at which the initial buckling form propagates along the delaminated layer). The
quasi-dynamic analysis and the refined analysis yield exceedingly close estimates of the
growth speed and the amplitude ofdeflection. Experimental observation has confirmed that
the crack growth speed for a thin surface delamination (i.e. with a relatively large ao/h) is
generally comparable to the flexural wave speed in the delaminated layer (Takeda et al.,
1982).

On the other hand, delamination growth under the fixed strain load eo continues
without arrest if the parameter IX is smaller than 1.5. Crack growth at first accelerates and
subsequently the growth speed approaches a limiting value comparable to the flexural wave
speed [eqn (25)]. The refined analysis generally yields smaller growth speeds compared to
the quasi-dynamic analysis. The differences are small in the case ofbi-directional growth. In
uni-directional growth (which has a relatively larger crack growth speed) the discrepancies
between the two solutions become significant as IX approaches unity. Furthermore, the crack
speed of the refined solution fluctuates in the growth process.

Both solutions violate the dynamic growth condition at the crack tip [eqn (8)]. In fast
delamination growth the energy-release rates calculated from the two approximate solutions
may be several times greater than the specific fractue energy Gt. This suggests that the
deflection function determined by the quasi-dynamic or the improved analysis is approxi­
mately valid only in an interior segment of the delaminated layer. In a boundary segment
adjacent to the moving crack tip, the true curvature of the layer is significantly curtailed in
compliance with the local growth condition [eqn (8)]. The curvature may even vanish and
delamination growth may be sustained only by shear action between the layer and the base
plate that are in partial contact.

The dynamic delamination growth problem, as defined by eqns (3)-(8), has been solved
numerically by Chen and Yin (1988) using the finite-difference method in the space­
time domain, without any a priori assumption of the shape of the deflection function. A
comparison of the growth speeds of the finite-difference dynamic solution with the approxi­
mate solution of the present analysis is shown in Fig. 8 [reproduced from Chen and Yin
(1988)]. The two sets ofresults, indicated respectively by fluctuating solid curves and smooth
dashed curves, show close agreement in those cases where delamination growth eventually

SAS 3O:15-F
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Fig. 8. Comparison of the growth speeds-quasi-dynamic solution vs the finite-difference solution
of the dynamic problem.

terminated in a state of arrest (see the three pairs of curves with r:t. ~ 1.5 in Fig. 8). In the
contrary case of accelerating, catastrophic growth (1 < r:t. < 1.5), the dynamic solution
yields a crack growth speed which is initially close to the present solution but becomes
much larger subsequently.

The deflection functions of the dynamic solution have been computed recently by Chen
and Ngo (1989), and compared with the static deflections. If r:t. > 1.5, the dynamic deflection
remains in close agreement with the static deflection during the growth process. For a < 1.5,
the dynamic deflection becomes increasingly smaller than the static deflection as growth
continues, and much of the difference is due to the significantly reduced curvature and slope
of the dynamic deflection near the crack tip [see Figs 10-12 in Chen and Ngo (1989)].

If crack growth accelerates to a speed significantly greater than the speeds of flexural
waves in the delaminated layer, then the evolution of the bending deformation of the
buckled layer cannot reach and directly affect the crack-tip region, which is moving ahead
faster than the flexural waves. Therefore, the instantaneous deflection of the delaminated
layer may depart increasingly from the equilibrium deflection assumed in the quasi-dynamic
analysis. However, the evolution of dynamic deflection can indirectly affect the crack-tip
stress field through the axial decompression of the layer, which is due to the non1iner term
(W' )2/2 in eqn (7), because the decompression propagates as longitudinal waves which have
a much greater wave speed depending only on the material and not on the length or
thickness of the layer. The decompression causes an abrupt change in the axial stress across
a short distance in the crack-tip region above the plane of delamination, while no such
drastic change of the axial stress exists in the region below the plane of delamination. As a
result, the moving crack-tip region is subjected to a severe shear action. Thus, catastrophic
delamination growth may begin as a predominantly model I fracture action in which the
crack-tip stress field is essentially affected by flexural waves in the delaminated layer, and
subsequently develop, with an increasing crack speed, into predominantly mode II fracture
behavior driven by axial decompression of the layer and intense shear action in the crack
tip region.
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